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An incident shock wave/turbulent boundary layer interaction at Mach 2.1 is
investigated using particle image velocimetry in combination with data processing
using the proper orthogonal decomposition, to obtain an instantaneous and statistical
description of the unsteady flow organization. The global structure of the interaction
is observed to vary considerably in time. Although reversed flow is often measured
instantaneously, on average no reversed flow is observed. On an instantaneous basis,
the interaction exhibits a multi-layered structure, characterized by a relatively high-
velocity outer region and low-velocity inner region. Discrete vortical structures are
prevalent along their interface, which create an intermittent fluid exchange as they
propagate downstream. A statistical analysis suggests that the instantaneous fullness
of the incoming boundary layer velocity profile is (weakly) correlated with the size
of the separation bubble and position of the reflected shock wave. The eigenmodes
show an energetic association between velocity fluctuations within the incoming
boundary layer, separated flow region and across the reflected shock wave, and
portray subspace features that represent the phenomenology observed within the
instantaneous realizations.

1. Introduction
For more than half a century, the interaction between a shock wave and turbulent

boundary layer (SWTBLI) has been one of the most outstanding challenges in high-
speed fluid dynamics, and many critical questions still remain unanswered (Dolling
2001). In recent decades, there has been an evolving quest for a deeper understanding
of the large-scale unsteadiness of SWTBLIs, in view of the apparent discrepancy in the
time scale of the low-frequency motion of the shock system and separated flow region
being of the order 10δ/U∞ − 100δ/U∞, in contrast to the characteristic time scale of
the incoming boundary layer δ/U∞, where δ is the boundary layer thickness and U∞
is the free-stream velocity (see e.g. Dussauge, Dupont & Debiève 2006). While the
small-scale motion has been typically attributed to the passage of turbulent structures
within the incoming boundary layer, identifying the cause(s) of the large-scale motion
has proven to be more problematic, and a cocktail of alternative hypotheses have
been proposed.

Some of the most established and well-documented explanations for the large-scale
unsteadiness include mechanisms involving the incoming boundary layer turbulence
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(see e.g. Andreopoulos & Muck 1987), the internal dynamics of the separated flow
region (see e.g. Dolling & Murphy 1983; Erengil & Dolling 1993), the incoming
boundary layer velocity profile (Beresh, Clemens & Dolling 2002) and large-scale
coherent motions within the incoming boundary layer, in the form of streamwise-
elongated low- and high-speed fluid (see Ganapathisubramani, Clemens & Dolling
2007). Although not as well-documented as the compression ramp interaction
investigations mentioned above, similar large-scale unsteadiness has also been found
in the shock reflection case, such as the low-frequency motion of the reflected shock
wave when boundary layer separation is involved.

For example Pirozzoli & Grasso (2006) conducted a direct numerical simulation
(DNS) of an incident SWTBLI and formulated a model based on an acoustic
feedback mechanism, similar to what occurs in the generation of tones in cavities
and screeching jets. Related experimental work has been analysed and reviewed by
Dussauge et al. (2006), who suggested that the three-dimensional structure of the
separation bubble may be at the origin of the large-scale unsteadiness. In particular,
Dupont, Haddad & Debiève (2006) obtained characteristic time and length scales of
the unsteady reflected shock wave and inside the downstream interaction and found
strong statistical evidence of a link between low-frequency shock movements and the
downstream interaction. Yet to date, the large-scale unsteadiness still lacks a complete
phenomenological exposition, and its precise cause(s) still remain a mystery.

The complexity of SWTBLIs therefore makes it desirable to distil from the evidence
a simplified description of the overall dynamics that can be more readily understood.
To achieve this, it is desirable to record accurate data that reveal the instantaneous
structure of the flow field, and then seek an approach for the analysis and synthesis
of the data that leads to the development of a low-order description while at the
same time ensuring that the most important features are retained. One technique that
has become popular in this role is the proper orthogonal decomposition (POD) (see
Berkooz, Holmes & Lumley 1993). In essence, the POD decomposes a signal into a
basis of non-specified functions chosen to represent the energy of that signal in the
fewest number of modes. These modes are constructed out of the spatial organization
of the system in the most efficient manner, in the sense that a finite number of these
modes represent more energy than any other set of orthogonal modes.

The technique also goes by other names, such as Karhunen–Loève decomposition,
principal component analysis and the Hotelling transformation, and has been
introduced into fluid dynamics by Lumley (1967) as a technique to highlight coherent
motions within turbulent flows. It has been applied to a variety of fluid dynamic
problems of practical interest, including boundary layers (Aubry et al. 1988) and
compressible flows (Moreno et al. 2004), to produce low-dimensional representations
of the flow phenomena present. Particle image velocimetry (PIV) data are particularly
suited for the POD analyses, since the entire spatial velocity field is available by
snapshots, leading to the construction of global eigenmodes that can be used to
further characterize the instantaneous spatial organization of the flow. Its application
to the SWTBLI problem is therefore considered to be well posed.

In the present paper, the unsteadiness of an incident SWTBLI at Mach 2.1 is
investigated. The basic flow features are first outlined using PIV as the flow diagnostic
technique. The interaction’s instantaneous flow structure is then discussed, followed
by a statistical analysis, to establish the characteristic features of the boundary
layer, separated flow region and reflected shock wave, as elements in the large-scale
unsteadiness. The flow field is then decomposed into a series of modes that capture
the most dominant components of the unsteadiness using the POD. A simplified



Unsteady aspects of a shock wave/boundary layer interaction 49

Parameter Quantity

M∞ 2.1
U∞ (m s−1) 518
δ99 (mm) 20
Cf 1.52 × 10−3

P0 (kPa) 276
T0 (K) 286
Reθ 4.92 × 104

Reτ 8600

Table 1. Experimental conditions.

conceptual model of the interaction’s unsteady flow organization is then formulated
based on a consolidation of the results.

2. Experimental facility and procedure
Experiments were performed in the blow-down transonic–supersonic wind tunnel

(TST-27) of the High-Speed Aerodynamics Laboratories at Delft University of
Technology. The facility generates flows in the Mach number range 0.5–4.2. The
Mach number can be set by means of a continuous variation of the throat section and
flexible nozzle walls. The tunnel operates at unit Reynolds numbers typically ranging
from 30 × 106 to 130 × 106 m−1, enabling an operating use of approximately 300 s.
In the present study, the test section had a height of 255 mm and a width of 280
mm. The tunnel was operated at a nominal free-stream Mach number M∞ = 2.1
(free-stream velocity U∞ = 518 m s−1), with a stagnation pressure of P0 = 276 kPa
and stagnation temperature of T0 = 286 K. Hot-wire anemometry measurements
performed in the free-stream of the test section determined the turbulence intensity
to be approximately 1 % of U∞.

The boundary layer developing along the floor of the wind tunnel was investigated
in the present experiment. The boundary layer developed along a smooth surface
under nearly adiabatic flow conditions for a development length of approximately
2 m. On entering the measurement domain, the boundary layer thickness (99 %
of U∞) was δ = 20 mm, with displacement thickness δ∗ = 4.4 mm and momentum
thickness θ = 1.4 mm. A log-law least squares fit in combination with the van Driest
transformation was used to determine the skin friction coefficient Cf = 1.52 × 10−3

corresponding to a friction velocity uτ =
√

(τw/ρw) = 19.4 m s−1. The Reynolds number
based on the momentum thickness is denoted by Reθ = U∞θ/υ∞ = 4.92 × 104 (where
υ∞ is the kinematic viscosity in the free-stream). The Reynolds number based on
the friction velocity and boundary layer thickness is denoted by Reτ = uτδ/υw = 8600
(where υw is the kinematic viscosity at the wall). The experimental conditions are
summarized in table 1. A statistical description of the interaction in terms of its
mean flow pattern and turbulence properties has been reported in a previous work by
Humble, Scarano & van Oudheusden (2007) and will not be repeated here. However,
the streamwise and wall-normal root mean square (r.m.s.) velocity components of
the incoming boundary layer were found to agree well with the two-component PIV
results of Hou (2003) and the hot-wire anemometry of Elena & Lacharme (1988), for
example (see also Humble et al. 2009 for a further comparison).

A shock generator was placed in the middle of the test section to generate the
incident shock wave. The generator consisted of a 100 mm chord single-sided wedge
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Seeded flow

Shock generator

Laser

Figure 1. Schematic of the experimental arrangement. Laser illumination is from
downstream of the shock generator. The flow direction is from left to right.

giving a flow deflection angle of 8◦. The generator was rigidly mounted on one side of
the wind tunnel and spanned 96 % of the test section. Figure 1 shows a schematic of
the experimental arrangement. A spanwise multi-planar PIV assessment by Humble
et al. (2007) has demonstrated that the mean flow field remains largely symmetrical
about the centreline, with the velocity components varying less than 5 % within the
spanwise region −2.5 � z/δ � 2.5, where z = 0 is the centreline of the test section.
This has been recently substantiated by surface oil-flow visualization of a very similar
interaction by Humble et al. (2009).

Two-component PIV was employed in the present study. A two-dimensional rake
seeded the flow in the settling chamber with UV-TITAN titanium dioxide (TiO2)
as tracer particles, with a manufacturer-specified nominal diameter of 50 nm and a
bulk density of 200 kg m−3. The particle relaxation time across the incident shock
wave has been previously estimated to be τp ≈ 2.1 μs, corresponding to a frequency
response fp ∼ 450 kHz (see Humble et al. 2007). The effective (agglomerated) diameter
of the particles has been estimated from electron microscopy scans of the porous
agglomerates and found to be dp ∼ 400 nm (see Schrijer, Scarano & van Oudheusden
2006). As suggested by Samimy & Lele (1991), the particle dynamic effects may be
further parameterized by the Stokes number St = τp/τf (where τf is the flow time
scale of interest). For accurate flow tracking at the time scale of τf , it is necessary
to meet the criterion that St 	 1. The present Stokes number, taking τf to be the
characteristic outer flow time scale δ/U∞ ≈ 40 μs, is about 0.06, indicating that the
particles track the flow with fidelity at the time scale of τf .

Flow illumination was provided by a Big Sky CFR PIV-200 Nd:Yag laser with
200 mJ pulsed energy and a 7 ns pulse duration at wavelength 532 nm. Laser light
access was provided by a probe inserted into the flow downstream of the shock
generator. The laser pulse separation was 2 μs, resulting in a particle displacement
of 1 mm in the free-stream flow. The light sheet was positioned in the middle of the
test section and was approximately 1.5 mm thick. Images were recorded by a PCO
Sensicam QE, a 12-bit charged-couple device camera with a sensor of size 1376 × 1040
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Parameter Quantity

Field of view 129 mm length, 40 mm height
Interrogation volume 1.9 × 1.6 × 1.5 mm3

Digital image resolution ≈ 11 pixels mm−1

Objective focal length f = 60 mm
f -number f# = 8
Laser pulse separation 2 μs

Table 2. Summary of PIV recording parameters.

pixels. Only 416 pixel rows were used given the large aspect ratio of the investigated
flow region, which enabled an increased recording rate of 10 Hz. The camera was
equipped with a Nikon 60 mm focal objective with f# = 8, in combination with a
narrow-bandpass 532 nm filter in order to minimize ambient light interference. The
flow was imaged in the streamwise (x) and wall-normal (y) directions over a field of
view of 129 × 40 mm2 (6.5δ × 2.0δ), resulting in a digital resolution of approximately
11 pixels mm−1. A dataset of order 1000 velocity vector fields was acquired. The
recorded images were interrogated using a cross-correlation algorithm with iterative
multi-grid window deformation (see Scarano & Riethmuller 2000), using rectangular
windows of final size 21 × 17 pixels (1.9 × 1.6 mm2) (0.1δ × 0.08δ), with an overlap
factor of 75 %. This results in a vector spacing of about 0.5 mm (0.025δ). Post-
processing involved identifying erroneous vectors using the universal median test
(see Westerweel & Scarano 2005) with a maximum median deviation set at 2.5. The
number of spurious vectors was less than 3 % in the dataset. Table 2 summarizes the
PIV recording parameters.

3. Proper orthogonal decomposition
In the present study, the fluctuating velocity field with respect to the estimated

mean pattern is decomposed into a limited number of modes using the POD. The
interested reader is referred to the review by Berkooz et al. (1993) for a more complete
mathematical outline of the POD and its application to turbulent flows. Briefly, N data
measurements are simultaneously taken at M time instants tn, such that the samples are
uncorrelated in time. The data represent instantaneous velocity fields obtained from
PIV. The mean velocity at a point ū(x) is subtracted from the instantaneous velocity
u(x, tn), leaving only data containing fluctuations from the mean u′(x, tn). The POD
extracts k time-independent orthonormal basis functions, empirical eigenfunctions or
eigenmodes ψk(x) and time-dependent orthonormal amplitude coefficients ak(tn) such
that the reconstruction

u′(x, tn) =

M∑
k=1

ak(tn) ψk(x) (1)

is optimal, in the sense that the functions ψ maximize the normalized averaged
projection of ψ on to u′, viz.

max
ψ

〈|(u′, ψ)|2〉
‖ψ‖2

. (2)

Here, ‖ · ‖ denotes the L2-norm ‖f ‖2 = (· , ·), where (· , ·) is the standard Euclidean
inner product; | · | is the modulus. The ergodic hypothesis is invoked so that ensemble
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averages 〈·〉 are considered as time averages. The problem can be recast as the solution
to the following Euler–Lagrange integral equation:∫

Ω

R(x; x ′) ψ(x ′ ) dx ′ = λψ(x), (3)

where Ω is the flow domain; λ is the eigenvalue; and the kernel R(x; x ′) is the
averaged space-correlation tensor, which for M realizations of data at a finite number
of discrete points is given by

R(x; x ′) =
1

M

M∑
n=1

u′(x, tn)u
′(x ′, tn). (4)

The non-negative and self-adjoint properties of R(x; x ′) ensure that all eigenvalues
are real and non-negative and can therefore be ordered, such that λn � λn+1 � . . . � 0.
In the present study, we use the method of snapshots as first proposed by Sirovich
(1987), to make use of the fact that u′(x, tn) and ψk(x) span the same linear space.
This enables the POD eigenmodes to be written as a linear sum of the data vectors,

ψk(x) =

M∑
n=1

Φk
n u′(x, tn), k = 1, . . . , M, (5)

where Φk
n is the nth component of the kth eigenvector. The eigenmodes can then be

found by solving the following eigenvalue problem:

CΦ = λΦ. (6)

In this way, the eigenvectors of the N × N matrix R are found by computing the
M × M correlation matrix C – an attractive method in the case in which M 	 N , as
applies in the present study. (That is for the POD analysis M ∼ 500, whereas each
snapshot contains vector fields of size N =271Nx × 116Ny ∼ 31 000. These values
were determined primarily by computer memory limitations.) The reconstruction of
a snapshot using a truncated subset of K modes can be performed with

u (x, tn) = ū (x) +

K∑
k=1

ak (tn) ψk (x) . (7)

The total energy is defined as the mean square fluctuating value of velocity and is
given by the sum of the eigenvalues λk . Each eigenmode may then be assigned an
energy percentage Ek based upon the eigenmode’s eigenvalue, such that

Ek = λk

/
M∑

n=1

λn. (8)

In compressible flows, the best choice of norm is not intuitively obvious: many of
the (interrelated) variables, including thermodynamic quantities, may be important
(see e.g. Rowley, Colonius & Murray 2004 for a further discussion). In the present
study, the use of the mean square fluctuating value of velocity, which represents the
‘kinetic energy’ of the flow, will be sufficient for our present purposes.
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Figure 2. Overview of the mean flow organization of the interaction. Mean velocity
streamlines are shown along with mean wall-normal velocity contours. Origin of the coordinate
system is located at the extrapolated wall impingement point of the incident shock wave. Note
the non-uniform axes. Adapted from Humble et al. (2007).

4. Results and discussion
4.1. Mean flow organization of the interaction

In order to provide the context for the main results later on, an overview of the
interaction’s mean flow organization is first presented in figure 2, which shows
two-dimensional velocity streamlines complemented with mean wall-normal velocity
contours, adapted from Humble et al. (2007). The spatial coordinates are normalized
with the undisturbed boundary layer thickness δ. Note also the non-uniform axes.
The dashed line is the extrapolation of the incident shock wave to the wall and is
taken to be the origin of the coordinate system used in the present study, with x

measured in the downstream flow direction and y normal to the wall.
The streamlines verify uniform upstream flow and illustrate the overall distortion

of the flow field, as a result of the interaction process. Regions of flow compression
typically appear as relatively densely spaced wall-normal velocity contours, whereas
regions of flow expansion typically appear as relatively sparsely spaced wall-normal
velocity contours. Notice how, close to the wall, the distance between adjacent
streamlines increases throughout the interaction, whereas farther away from the wall,
the distance between adjacent streamlines decreases. This highlights the contrasting
behaviour between the subsonic and supersonic parts of the flow field, respectively, and
gives us our first hints of a multi-structured interaction. Observe also the compression
waves generated within the incoming boundary layer approximately 2δ upstream
of the origin. These compression waves coalesce as they leave the boundary layer
to form the reflected shock wave, which will become a focal point of our discussion
later on.

Farther downstream, the subsonic layer begins to contract, causing the outer fluid
to move back towards the wall. Although difficult to discern from this figure, a
gradual recompression process takes place in the outer flow as it is slowly turned
back parallel with the wall. Importantly, for what follows, the time-averaged velocity
field (see Humble et al. 2007) strongly suggests that no flow separation is observed on
the mean. Given the difficulties of resolving very close to the wall with PIV, however,
this is by no means definitive, although this does not affect the overall conclusions to
be drawn.



54 R. A. Humble, F. Scarano and B. W. van Oudheusden

1.5(a) (b)

(c) (d)

(e) (f)

–0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0

y/
δ

0.5

0

1.5

1.0

y/
δ

0.5

0
1.5

1.0

y/
δ

x/δ

0.5

0
–3 –2 –1 0 1 2

x/δ
–3 –2 –1 0 1 2

Figure 3. Instantaneous flow organization of the interaction. A series of uncorrelated
instantaneous streamwise velocity distributions u/U∞ are presented. Velocity vectors show
1 in 22 in the streamwise direction. Note the non-uniform axes.

4.2. Instantaneous flow organization of the interaction

The question now naturally arises as to whether the above result is an accurate
representation of the flow structure, since it is the result of time averaging the
flow fields. A series of instantaneous streamwise velocity fields is therefore shown
in figure 3. These fields are chosen because they exemplify the features observed in
the complete dataset. The acquisition time between any two velocity fields (10 Hz
recording rate) is much greater than any characteristic time scale, and so the velocity
fields are uncorrelated in time. Velocity vectors are also shown, under-sampled with
1 in 22 in the streamwise direction for clarity. Note also the non-uniform axes.

The results portray an unsteady incoming boundary layer, with its instantaneous
edge appearing as an intermittent interface with the outer free-stream flow. This result
is similar to those of Smith & Smits (1995), who visualized the structure of supersonic
boundary layers using Schlieren and Rayleigh scattering and characterized the outer
layer as consisting of an array of regularly spaced uniform low-density bulges,
separated from a uniform higher-density free-stream by a sharp, instantaneously
ragged interface. Moving downstream, the penetration of the incident shock wave into
the boundary layer can be observed. Note the relatively weak feature immediately
upstream of the incident shock wave (roughly parallel to it) in figure 3(e, f ), for
example. This is due to optical aberration effects introduced by the inhomogeneous
index of refraction of this compressible flow.

The global structure of the interaction can be seen to change significantly in time.
Figure 3(a–c) shows that in contrast to the mean velocity distribution, fluid close to the
wall is instantaneously redirected upstream as it approaches the interaction, leading
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to the formation of a separated flow region. At these instants, the flow structure
is very different from the mean flow field and resembles the mean separated flow
model, as characterized by a well-defined separation bubble (see Simpson 1989). The
size of the separation bubble clearly varies in time. By visual inspection, it appears
to have a streamwise length that varies in the range 0–2δ (compare for instance
figure 3c, d). The flow within the bubble cannot be characterized as a stagnant
velocity zone; the maximum backflow velocity often exceeds 0.1U∞. This is consistent
with the measurements made by Bookey, Wyckham & Smits (2005) in their incident
SWTBLI at Mach 2.9; they reported a similar reversed-flow velocity magnitude. In
contrast, figure 3(d , f ) shows instants at which the boundary layer remains fully
attached throughout the interaction. The interaction may therefore be conceived as
an intermittently separated configuration that is very different from its time-averaged
counterpart.

On closer inspection, figure 3(a–c, e) shows that the interaction exhibits, on an
instantaneous basis, a multi-layered structure, characterized by a high-velocity outer
layer (typically u/U∞ > 0.5, shown in green–blue), above a layer of relatively low
velocity close to the wall (typically u/U∞ < 0.5, shown in red–orange). These layers
are conceptually reminiscent of the zones of relatively uniform momentum reported by
Adrian, Meinhart & Tomkins (2000) in their incompressible turbulent boundary layer.
The term ‘layer’ is used here to emphasize that while they are defined instantaneously,
they typically extend in the streamwise direction across the measurement domain. The
outer layer comprises most of the incoming boundary layer. The inner layer thickens
rapidly as it enters the first part of the interaction, often reaching its maximum
thickness beneath the incident shock wave. The reader should note, however, that
the above is somewhat of a subjective characterization, given the complex nature
of the interaction, and is done so for the purposes of simplifying the conceptual
interpretation of the results.

Nevertheless, the two layers appear to be separated by a thin region of relatively
high shear, indicated by the yellow contour. Figure 3(b, c, e) shows that this interface
has an irregular and intermittent nature, with a typically downstream-sloping pattern
within the redeveloping boundary layer. Figure 3(b, c) shows that a vigorous mixing
occurs across these layers, with outer fluid injected deep into the low-velocity region.
The flow in the detached shear layer therefore appears to share superficial similarities
with the plane mixing layer, as noted by Na & Moin (1998) in their DNS of an
incompressible separated flow, for example. Moving downstream, figure 3(a–c) shows
that the separated shear layer undergoes a local instantaneous reattachment. Yet
while the reattachment process takes place within a relatively short streamwise extent,
the overall velocity deficit within the inner layer persists much farther downstream.
In fact, it is clear that the boundary layer does not fully recover to its incoming
conditions within the present measurement domain.

4.3. Vorticity characteristics

To complement the discussion on the instantaneous velocity fields, out-of-plane
vorticity and vortical (or coherent) structures within the interaction are visualized.
This constitutes one of the subtler aspects of interpreting the PIV velocity vector fields
(see Adrian et al. 2000). The instantaneous velocity fields in figure 3 are reproduced
in figure 4, now displaying flooded contours of instantaneous out-of-plane (spanwise)
vorticity: ωzδ/U∞. Note the non-uniform axes. To ease visualization, the spatial
derivatives have been estimated by a second-order least squares regression using a
5 × 5 kernel, although this does not affect the conclusions to be drawn. Overlaid
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Figure 4. Instantaneous vorticity structure of the interaction. Discrete regions of Q > 0
(determined using the Q-criterion) are shown in black along with flooded out-of-plane vorticity
contours −ωzδ/U∞. Wall-normal velocity contours are shown as white lines with 12 levels
within the range –0.15 � v/U∞ � 0.15. The dashed contours indicate negative values. All figure
parts correspond to those in figure 3.

are white lines of instantaneous wall-normal velocity (v/U∞) within the range –0.15
� v/U∞ � 0.15, where dashed lines indicate negative values.

In addition, following the method proposed by Hunt, Wray & Moin (1988), vortical
structures are identified, as being any contiguous region of flow in which the second
invariant of the velocity gradient tensor Q is greater than zero. In the present study,
it is assumed that the criterion Q > 0 is valid in compressible flow, since the (in-plane)
divergence of the velocity field was found to be relatively small (typically an order
of magnitude less than the rate of strain and rate of rotation), except of course in
the presence of shock waves, but more importantly, because results were obtained
that were very similar to the use of other (incompressible) criteria, such as the λ2

criterion (see Jeong et al. 1997). The reader will also note that in two-dimensional
measurements there are missing components of the velocity gradient tensor, and
the following determined patterns must therefore be considered as only a section
of the complete three-dimensional structure from the x–y plane. Furthermore, since
the present resolution cannot be used to accurately determine statistics of derived
quantities such as vorticity, the following results are used qualitatively to illustrate
the interaction’s global vorticity organization.

With these caveats in mind, figure 4 shows some interesting features. Within the
incoming boundary layer, most of the vorticity tends to be concentrated relatively
close to the wall in the form of a vorticity layer. This is consistent with the work of
Ringuette, Wu & Martin (2008), who visualized instantaneous out-of-plane vorticity
from the DNS of their supersonic boundary layers in the streamwise–wall-normal
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plane and also observed regions of relatively high levels of vorticity close to the wall. It
was also shown by these authors when visualizing the same result in three dimensions
that the attendant vortical structures are in fact connected out of the plane and
form complicated hairpin packets. Our two-dimensional patterns must therefore be
considered as only a cross-sectional view of a more complex three-dimensional flow
field. In the present results, flow structures revealed by the Q-discriminant are also
distinguished within the incoming boundary layer very close to the wall, although the
reader must exercise caution when interpreting such structures. The present resolution
is insufficient to properly resolve the swirling motion in this region, and many are
most likely to be numerical artefacts.

As the interaction is approached, the flow field structure can be seen to change
dramatically. Figure 4(a–c) shows that when flow separation occurs, the vorticity
layer and vortical structures are lifted up away from the wall into the shear layer
within the detachment region. They appear to turn around the separation bubble,
as revealed by a comparison of figures 3(b, c) and 4(b, c) for instance. This is in
agreement with the observations made by Na & Moin (1998) and Chong et al.
(1998) in their DNS of incompressible separated flows, who observed that such
structures would treat the separation bubble essentially like a streamlined obstacle
and would often impinge back on to the wall farther downstream. The present
vortical structures are lifted away from the wall and appear to propagate mainly
through the incident shock wave’s tip. This is consistent with the DNS of an
incident SWTBLI by Pirozzoli & Grasso (2006), who found that the oscillatory
motion of the incident shock wave occurs mainly at its tip. Farther downstream,
the vortical structures return to the proximity of the wall in the reattachment
region. Notably, very few vortical structures can be observed within the separated
flow region itself and instead typically occur along the interface between the two
layers.

It is also interesting to observe that a similar lifting of the vorticity layer and
vortical structures occurs even without a significantly reversed-flow region (see e.g.
figure 4e). This was observed many times throughout the dataset. It therefore appears
that the vortical structures respond to a strongly retarded inner layer flow, in much
the same way as they do to a large-scale recirculating bubble. Accordingly, when
there is no significant inner layer velocity deficit, there is no observed lifting of the
vortical structures, as demonstrated in figure 4(d), for instance. This is especially
important in the present interaction because it means that it can instantaneously
exhibit many of the features of a large-scale separated interaction, even without a
large-scale reversed-flow region.

Farther downstream, regions of spanwise vorticity can be seen to spread
more broadly over the height of the interaction with downstream development.
Figure 4(a, b, e) shows that they often appear as interconnected chains, in combination
with relatively isolated regions that are dispersed throughout the height of the
boundary layer. Spatio-temporal studies of an incident SWTBLI by Dupont et al.
(2006) have determined that frequencies tend to decrease along the separated flow
region, noting that in subsonic recirculating flows, such frequency evolutions are
associated with large-scale structures that are convected in a mixing layer that
develops downstream of flow detachment. It therefore appears possible that vortical
structures grow and develop within the separated shear layer, as part of a vortex-
shedding process associated with the separation bubble. This will become a focal
point of the POD analysis later on.
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The wall-normal velocity contours in the first part of the interaction are especially
interesting because they indicate a zone of compression that is the reflected shock
wave region. This zone can be observed to change significantly in time. It can appear
as a relatively diffuse feature, such as in figure 4(e), whereas at other instants it appears
relatively distinct, such as in figure 4(f ). In addition, lines of wall-normal velocity
often appear instantaneously warped. Figure 4(a) shows a concave compression
region, whereas figure 4(b) shows a convex compression region. At other instants, the
reflected shock wave region assumes a combination of both these patterns, as shown
in figure 4(c), for example.

To gain an idea of the time scales of this unsteadiness, hot-wire anemometry
measurements were carried out within the centre of the reflected shock wave region
within the boundary layer at x/δ = −1.8 and y/δ =0.2 (y = 4 mm). This location
was chosen because the flow here is supersonic, which avoids the complexities of
transonic flow, but is sufficiently close to the wall to make comparisons with results
from the literature. The results will be presented in more detail in a later paper, but it
was found that peak energetic frequencies occur at about 1–3 kHz (0.04–0.12U∞/δ),
substantiating the notion that frequencies within the reflected shock wave region are
at least an order of magnitude lower than the characteristic boundary layer frequency
U∞/δ (see e.g. Dussauge et al. 2006).

Now consider the Strouhal number SL = f L/U∞, where L is defined as the distance
between the extrapolated wall impingement points of the reflected and incident
shock waves (see Dupont et al. 2006); then in the present study L/δ = 2.27 (L =
45 mm), which results in an energetic Strouhal number range SL = 0.1–0.27, about
3–10 times larger than the most energetic Strouhal numbers reported elsewhere. In
particular, the compilation of SL by Dussauge et al. (2006) for several configurations
in the literature in which experimental data were available, including compression
ramp and blunt fin interactions as well as over-expanded nozzles, revealed that
SL grouped the experiments together for about SL = 0.02–0.05. This discrepancy is
currently an active area of research, but the intermittent nature of the interaction
may provide a possible explanation: introducing Lrms as the r.m.s. of the (largest)
instantaneous separation bubble length, which includes the cases in which no
bubble occurs, gives Lrms/δ = 0.28, which results in SL = 0.01–0.03, in much better
agreement with the results reported above. In the absence of further results, however,
the data remain provocative. Nevertheless, the fact remains that the reflected
shock wave region is dominated by energetic frequencies that are an order of
magnitude lower than those within the undisturbed boundary layer at the same
distance from the wall, consistent with what has been reported in the litera-
ture.

Returning now to investigate in more detail the role of the vortical structures in
the separation process, figure 4(b) is repeated in figure 5(a), this time with velocity
vectors in a convective frame of reference of 0.8U∞. In this frame of reference, many
of the velocity vectors can be seen to swirl around distinct regions of Q within the
detachment region. It appears from these convective velocity vectors that a fluid
exchange occurs between the inner and outer layers of the interaction. To better
illustrate this, the instantaneous wall-normal velocity is extracted along the thick grey
line S, which is judiciously chosen to be the locus of points through the vortical
structures as they propagate throughout the interaction and is shown in figure 5(b).
The instantaneous separation and reattachment points (xs and xr respectively; see
§ 4.4 for further details), as well as the distribution of the mean wall-normal velocity
extracted along S, are also shown for comparison.
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It can be seen that both the instantaneous and mean wall-normal velocities remain
approximately zero within the incoming boundary layer. Within the first part of the
interaction, the instantaneous velocity profile begins to deviate from the mean profile,
characterized by a sinuous alternation of positive and negative wall-normal velocity
fluctuations. Maximum instantaneous wall-normal velocities reach over 10 % of U∞,
which is in fact comparable to the maximum (streamwise) reversed-flow velocity.
A closer comparison of figure 5(a) with figures 3(b) and 4(b) suggests a physical
mechanism, whereby high-velocity fluid is drawn in and ingested between the vortical
structures as they ride over the inner flow, whereas low-velocity fluid from the
separated flow is transported away from the wall. This description is not dissimilar to
the scenario described by Simpson (1989) in low-speed incompressible separated flows,
who discussed how movies of laser-illuminated smoke and turbulence energy results
clearly reveal how large-scale eddy structures supply most of the near-wall reversed
flow. The separation process of the present interaction therefore appears to share
some important similarities with incompressible separated flows, and we will discuss
later on how these structures may be reconciled with the large-scale unsteadiness.

4.4. Statistical analysis

It should now be clear from the preceding results that the structure of the
interaction changes significantly in time, and to make more quantitative statements we
characterize this behaviour statistically. To begin with, figure 6 shows lines of constant
value for the reversed-flow probability of the instantaneous streamwise velocity being
less than zero p(u < 0). These contours have been computed from histograms of
the instantaneous streamwise velocity. For the sake of clarity, the inset shows a
zoomed view of the interaction region, with a dilated wall-normal axis. The region
of p(u < 0) appears as a relatively shallow region that is elongated in the streamwise
direction and roughly symmetric about an axis in the wall-normal direction. This
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terms ID, ITD and TD are defined in the text. The inset shows zoomed region with the wall-
normal coordinate dilated for clarity.

confirms an intermittently separated flow region with a streamwise extent within
0–2δ. Observe how p(u < 0) is never equal to unity anywhere in the flow, consistent
with the observation that no reversed flow occurs on average. On the other hand,
pmax (u < 0) within the interaction is about 0.5, indicating that flow reversal occurs
in around 50 % of the total number of realizations. Of course, this inference is a
conservative estimate, since reversed flow may occur in different regions. Note that
because of the limited number of contour levels displayed, no reversed flow is shown
within the incoming and redeveloping boundary layers.

The existence of an intermittent reversed flow complicates the criterion used to
define separation, and we need to distinguish between mean and instantaneous
flow separation. For steady free-stream separating boundary layers, the following
set of quantitative definitions on the separation state near the wall have therefore
been proposed by Simpson (1989): ‘incipient detachment’ (ID) occurs when the
instantaneous backflow occurs 1 % of the time; ‘intermittent transitory detachment’
(ITD) occurs with instantaneous backflow 20 % of the time; ‘transitory detachment’
(TD) occurs with instantaneous backflow 50 % of the time; and ‘detachment’ (D)
occurs where the time-averaged wall-shear stress τ̄wall = 0. In the present study, the
locations of ID, ITD and TD occur at approximately (x/δ)ID = −2.0, (x/δ)IT D = −1.6,
and (x/δ)T D = −0.75, respectively, and are indicated in the figure, where ensemble
averages have been interpreted as time averages. The location D does not exist in the
present interaction, but its occurrence for a sufficiently stronger interaction is likely
to be very close to TD (see Simpson 1989). Overall, it is clear that depending on the
criterion used, there is quite some discrepancy in the location of the separation point.

As a result of the interaction’s intermittency, the instantaneous separation and
reattachment points wander back and forth along the wall in time. To characterize
this behaviour, a statistical analysis of the instantaneous streamwise location of the
separation point xs and reattachment point xr is carried out. Following the approach of
Kiya & Sasaki (1985), the reversed-flow region is defined as a contiguous region based
on where the instantaneous streamwise velocity near the surface becomes negative,
and we determine xs and xr as the zero crossings of the instantaneous streamwise
velocity. The velocity distribution at the height y =1.0 mm (y/δ = 0.05) was selected,
although the overall trends of the results to be discussed were found to be relatively
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insensitive to small changes in the height chosen. Figure 7(a) shows xs compared with
xr . The line xs = xr delimits the case in which the separation and reattachment points
coincide (i.e. in which incipient separation occurs). The accumulation of many points
along this line suggests that many small-scale separation regions occur, and inspection
of the instantaneous realizations reveals that these regions are often present at several
locations simultaneously along the wall. Given the present resolution, however, some
of these relatively small-scale separation regions should be considered as numerical
artefacts.

Discrete joint probability density functions (p.d.f.s) are shown in figure 7(b), which
indicate the relative probability of the ith streamwise position (x/δ)i of separation and
reattachment falling within a range (x/δ)1 < (x/δ)i < (x/δ)1 + �(x/δ), where �(x/δ)
is the bin width of the p.d.f., taken as approximately 0.2 in the present study. These
contours have been computed from histograms of the instantaneous streamwise
velocity, and therefore p includes the cases in which the boundary layer remains
fully attached. From these results, we may arbitrarily delineate the behaviour of the
separated flow into the following regions as indicated in the figure:
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(i) Region I. In this region xs < xr , and the separated flow region is relatively
upstream of the interaction. That is if the separation location is relatively upstream,
then it is more likely to be accompanied by a relatively upstream reattachment
location.

(ii) Region II. In this region xs < xr , and the separated flow region is relatively
downstream of the interaction. That is if the separation location is relatively
downstream, then it is more likely to be accompanied by a relatively downstream
reattachment location.

(iii) Region III. In this region xs > xr , which is a physically impossible case by
convention, and so data points do not fall in this region.

The line perpendicular to the incipient separation line separates regions I and II
and marks the case of a separation bubble changing size symmetrically about a plane
perpendicular to the wall. It emanates from TD at x/δ = −0.75. Points along this line
from TD represent separation zones of increasing streamwise extent. As expected, p

rapidly decreases along this line, and no bubble size greater than 2δ was found to
occur. Lines of equiprobability appear quasi-symmetric about this line, indicating that
for an increasing bubble size, it is more likely that xs appears relatively upstream and
xr appears relatively downstream, and vice versa. This is consistent with the notion of
an expanding and contracting separation bubble and with the covariance coefficient
distribution of the separation and reattachment locations obtained by Pirozzoli &
Grasso (2006), which also suggests the occurrence of an expanding and contracting
separation bubble. A trend line showing the locus of points of maximal probability
is also shown in figure 7(b) for comparison, indicated by the solid line. This line can
be seen to deviate slightly into region I from the straight line emanating from TD,
indicating the intriguing trend that for an increasing bubble size, its centre appears
slightly more upstream, in the time-averaged sense.

Discrete p.d.f.s of xs and xr in figure 7(c, d) show that both locations occur along
the complete streamwise extent of the measurement domain. The ID location at
x/δ = −2.0 in particular seems to mark the onset of a significant fraction of separated
flow cases and roughly corresponds to the region in which the boundary layer first
encounters the upstream influence of the interaction. Observe how the p.d.f. tails
persist appreciably farther downstream of the interaction than they do upstream,
indicating that reversed-flow regions occur more frequently within the redeveloping
boundary layer than within the incoming boundary layer. The r.m.s. values of xs

and xr are approximately 0.3 and 0.29, respectively, indicating that the separation
and reattachment points undergo somewhat similar degrees of spatial variation. This
may be compared with the results of Pirozzoli & Grasso (2006), who found a larger
variation of the reattachment location, and Na & Moin (1998), who found a larger
variation of the separation location.

4.5. On the cause(s) of the interaction’s unsteadiness

Having outlined some physical and statistical properties of the interaction’s
unsteadiness, we now wish to shed some light on the possible mechanism(s) behind
this behaviour. As can probably be discerned from the introduction, however, the
extant literature on SWTBLI unsteadiness is too large and diverse to be surveyed
meaningfully within the confines of this paper. Nevertheless, we wish to carefully distil
some pertinent works that will help guide us on attempting to consolidate the present
results. In particular, Beresh et al. (2002) have examined the role of the incoming
boundary in a compression ramp interaction by considering incoming boundary layer
velocity profiles derived from PIV data, conditioned on the instantaneous separation
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Figure 8. Relationship between the incoming boundary layer and interaction region
unsteadiness. (a) Joint p.d.f. of equilibrium shape factor 1 − 1/Hi and streamwise extent
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shock wave (x − xmean)/δ. Shape factor Hi is computed at x/δ = −3.0, and only the largest
value of � in each realization is considered. Note that the results are normalized by their
respective r.m.s. values.

shock foot location derived from wall-pressure measurements. Ensemble-averaged
velocity fluctuations conditioned on different types of shock motion revealed that
positive fluctuations in streamwise velocity near the wall corresponded to downstream
shock motion, and vice versa. Since positive fluctuations within the boundary layer
suggest that its profile is momentarily fuller, and vice versa, a suitable proposal was
that the shape parameter, which is a direct measure of the fullness of the boundary
layer’s streamwise velocity profile, is first related to the size of the separated flow
region.

To characterize the state of the incoming boundary layer in the present study, we use
the ‘equilibrium shape parameter’, defined as 1−1/Hi , where Hi is the incompressible
shape parameter. The use of 1−1/Hi is particularly well suited to SWTBLIs involving
large-scale separated flows (see Délery & Marvin 1986). The shape parameter Hi was
determined by integrating the incoming streamwise velocity profiles at the upstream
edge of the measurement domain x/δ = −3.0. The trends to be discussed, however,
were found to be relatively insensitive to small variations in the streamwise location
chosen, consistent with the long tails observed in streamwise velocity autocorrelation
function (see e.g. Ganapathisubramani, Clemens & Dolling 2006). The size of the
separated flow region is characterized by its streamwise extent �= xr − xs . Since
several reversed-flow regions often occur within a realization, only the largest value
of � in each realization is considered (if reversed flow occurs at all).

Joint p.d.f.s between 1 − 1/Hi and � are shown in figure 8(a), where they have
been normalized by their respective r.m.s. values. The reader should exercise some
caution when interpreting values of the shape parameter, due to the necessity of
having to accurately resolve the velocity close to the wall. Based on a linear error
propagation analysis, taking into account the r.m.s. measurement uncertainties of
both the instantaneous streamwise velocity and PIV resolution, the estimated r.m.s.
measurement uncertainty of Hi is of the order 5 %. Indeed, figure 8(a) indicates
that the median shape factor is 1 − 1/Hi ≈ 0.285, from which it can be deduced that
Hi ≈ 1.4, consistent with the value for a zero-pressure-gradient turbulent boundary
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layer. Note also that � can only be positive or null: therefore its median value is
positive.

It can be seen that the contours of equiprobability appear elliptical, with the
major axis of the ellipse inclined with the abscissa. The nature of the contour levels,
as presented here, can indicate that for a given (1 − 1/Hi)/(1 − 1/Hi)rms , a similar
probability is obtained for large bubble sizes as well as for small ones. However, for
bubble sizes larger than the median value, for such inclined contours and given the
value of (1 − 1/Hi)/(1 − 1/Hi)rms , the probability of observing a larger bubble always
decreases, independent of whether or not the value of (1−1/Hi)/(1−1/Hi)rms is greater
or less than its median value. (Strictly speaking, only for vertical contours would this
not be the case.) This behaviour of course becomes more difficult, and more dubious,
to discern the further one moves away from the median (1 − 1/Hi)/(1 − 1/Hi)rms ,
particularly for large values of (1 − 1/Hi)/(1 − 1/Hi)rms .

With these caveats in mind, although the elliptical appearance of the results depends
somewhat on the scale chosen, the trend is then clear: when 1 − 1/Hi is greater than
its median value (boundary layer less full), the streamwise extent of the (largest)
separated flow region is more likely to be larger than its median size. Conversely,
when 1 − 1/Hi is less than its median value (boundary layer fuller), the streamwise
extent of the (largest) separated flow region is more likely to be smaller than its
median size. Put another way, the larger the given bubble size, the smaller the
probability p of observing it. However, this probability decreases less rapidly along a
line of slightly increasing (1 − 1/Hi)/(1 − 1/Hi)rms extending from its median value
than it does for the median value alone. The converse is thus that a slightly increasing
(1 − 1/Hi)/(1 − 1/Hi)rms leads to a higher probability of an increased bubble size than
if only the median value is considered. It is important to emphasize, however, that
the correlation coefficient between 1 − 1/Hi and � is −0.22, and so the reader must
exercise some caution here and consider the above relationship to be weak although
not negligible.

Nevertheless, these results are qualitatively consistent with the model proposed
by Beresh et al. (2002), in the sense that a fuller incoming velocity profile entering
the interaction provides an increased resistance to flow separation, which leads to a
smaller separated flow region, and vice versa. It must be stressed, however, that given
the limited correlation of the present data, this relationship may not be the most
important mechanism present, and furthermore, it represents a quasi-steady view,
in the sense that the incoming boundary layer profile and separated flow region are
related, but no temporal delay is taken into account. On the other hand, as mentioned
in the introduction, the time scales associated with the low-frequency unsteadiness are
lower than the convective time by at least an order of magnitude, and so the quasi-
steady view is not therefore considered restrictive, at least not for the low-frequency
unsteadiness of the interaction.

We can also anticipate that 1 − 1/Hi is related to the reflected shock wave
position, since the latter has been shown to undergo a displacement due to the
expansion and contraction of the separation bubble (see e.g. Dolling & Murphy
1983; Erengil & Dolling 1993). After experimenting with a variety of criteria, it was
found that the reflected shock wave position could be conveniently estimated from
the instantaneous wall-normal velocity distribution across the shock wave by using
the streamwise location at which v/U∞ = 0 as a proxy for the shock wave’s position.
This was because the trends to be discussed were found to be relatively insensitive
to several other criteria, including more exotic quantities, such as the (in-plane)
divergence.
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Figure 8(b) shows joint p.d.f.s of 1 − 1/Hi and the instantaneous position of the
reflected shock wave relative to its mean position (x − xmean)/δ. Note again that
these data have been normalized by their respective r.m.s. values. The reflected shock
wave undergoes a motion that has a streamwise extent of the order 0.5δ (shown
as approximately four standard deviations in the figure), consistent with what is
observed in the instantaneous realizations. The contours of equiprobability again
appear elliptical, with the major axis of the ellipse inclined with the abscissa. This
suggests that when 1 − 1/Hi is less than its median value (boundary layer fuller), the
reflected shock wave is more likely to be located downstream of its mean position.
Conversely, when 1 − 1/Hi is greater than its median value (boundary layer less full),
the reflected shock wave is more likely to be located upstream of its mean position.
The correlation coefficient between 1 − 1/Hi and (x − xmean)/δ is −0.3, indicating
again that this relationship is relatively weak although not negligible.

In a related work, Dupont et al. (2008) have recently carried out PIV measurements
of their shock reflection interaction and found a correlation between the instantaneous
position of the shock wave and thickness of the recirculating zone. They proposed
that when the recirculating zone dilates, the shock wave moves upstream, and when
the bubble contracts, the shock wave moves downstream. The correlation coefficient
in their study was found to be −0.5 based on 200 realizations. In the present study,
the calculation of the corresponding correlation coefficient is more complicated, both
because the interaction is only intermittently separated, meaning that a separation
bubble is not always present, and because when separation does occur, it is not always
large scale (i.e. O(δ)) but often includes several smaller-scale separated flow regions
scattered simultaneously throughout the interaction.

The effects of computing the correlation coefficient conditioned on various bubble
sizes are therefore especially interesting. Considering the complete dataset for instance,
the corresponding correlation coefficient between the separation bubble size and shock
wave location is about −0.1. However, considering bubble sizes �/δ > 0.2, which helps
remove the influence of small-scale separation (as well as numerical artefacts) on the
results, the corresponding correlation coefficient increases to between −0.2 and −0.3
depending on the �/δ threshold used. (For higher thresholds of �/δ > 1.0 (say),
the limited number of data points becomes an important factor.) The idea of a
breathing separation bubble displacing the shock wave is therefore limited in the
present interaction, and it may well be that the statistical link between the incoming
boundary layer, separated flow region and reflected shock wave is weaker here than
in the other studies because the present interaction is only intermittently separated,
and this may change the sensitivity of the shock wave to incoming disturbances.
Comparisons between separated and intermittently separated interactions should
therefore be made with care, although the conceptual model by Dupont et al. (2008)
above is qualitatively consistent with the present study.

Finally, it may also be of interest to note that in the present study the joint p.d.f.
shows a stronger correlation between the incoming boundary layer and reflected
shock wave position than the incoming boundary layer and separated flow extent.
This seemingly contradictory result can be explained because only the largest value
of � was chosen within each realization, which exacerbates the correlation for small
�, since smaller values have been shown to have the largest spatial variation.

4.6. The POD analysis

To complete our discussion, we now decompose the fluctuating part of the flow
field using the POD. Since the POD is based on ensemble-averaged correlations,
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the eigenmodes represent only statistical information about the flow features they
represent. A conceptually appealing interpretation is to view the following eigenmodes
as perturbations to the mean flow field.

As the motivating prelude, figure 9 shows the modal energy and cumulative modal
energy distributions of the POD eigenmodes. The POD eigenspectrum reveals that
the first eigenmode is by far the most dominant, capturing almost 20 % of the total
energy. A mode that contributes a substantial proportion of the total energy of the
flow is considered to play a more significant role in the flow dynamics than a mode
that contains less energy (Kostas, Soria & Chong 2005). It therefore appears that the
first eigenmode represents an important contribution to the interaction’s unsteadiness.
Furthermore, Berkooz et al. (1993) have shown that if the eigenspectrum decays fast
enough, then all the likely realizations can be found within a relatively small subset of
eigenmodes. The cumulative ratio

∑K

i =1 λi/
∑M

i =1 λi gives an indication of this energy
convergence, by showing the amount of energy contained in the M element system,
contained in the first K eigenmodes. To capture most of the energy, it is necessary that∑K

i =1 λi ≈
∑M

i =1 λi (and desirable that K 	 M). The cumulative energy distribution
shows that over 70 modes are required to capture 75 % (say) of the total energy. In
comparison, other POD studies that have used planar PIV data, such as the one by
Bernero & Fiedler (2000), have reported about 20 modes in their study of a jet in
counter-flow, and Patte-Rouland et al. (2001) have reported about 60 modes in their
study of an annular jet, for the same amount of energy. Only a limited number of
modes (say < 10) contain an appreciable fraction of the total energy (say > 2 %),
and we therefore restrict our attention to discussing them.

For the purposes of visualizing the two-dimensional eigenmodes, we first create
a one-dimensional phase space φ using the temporal coefficients from the analysis.
Recall that one can arbitrarily choose a finite number K of the most energetic modes
to form a subspace spanned by the first K eigenmodes. Similarly, subspaces can be
formulated based on a single eigenmode, by first ordering the temporal coefficients
of all M observations, such that φk

n = {ak(tn) � ak(tn+1) � . . . � ak(tM )}. An eigenmode
then yields M subspaces, the nth subspace of the kth eigenmode uk

n(x, y) given by

uk
n(x, y) = ak(tn) ψk(x, y), n = 1, . . . , M. (9)
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These subspaces provide a convenient method to analyse the behaviour of the kth
eigenmode. For notational convenience, we first define φ as

φk
n =

{
0 when ak = (ak)min (n = 1),
π when ak = (ak)max (n = M).

(10)

Using the above procedure, perspective renderings of the first four eigenmodes are
shown in figure 10, sorted by decreasing fractional energy, with their modal number
and relative energy content shown in the inset. The streamwise and wall-normal
velocity components are displayed on the left and right, respectively. These figures
may be conceptualized by considering the eigenmode in the x–y plane and viewing
it in the phase space φ along the spanwise coordinate. Since the temporal coefficients
associated with each eigenmode for a particular realization can be either positive or
negative, only the relative changes of sign within an eigenmode are important.

Recall that the first eigenmode is by far the most energetic. Figure 10(a) shows
that this mode contains relatively large streamwise velocity fluctuations within the
incoming boundary layer relatively close to the wall and separated flow region, in
combination with wall-normal velocity fluctuations across the reflected shock wave, as
shown in figure 10(b). (The curious reader may look ahead to figure 11 to see how the
projection of this eigenmode on to the mean flow field contributes to the interaction’s
unsteadiness.) Note also the lack of velocity fluctuations along the incident shock
wave, indicating that it is a steady feature on this energetic basis.

Higher-order eigenmodes have an energy level that is significantly less than the
first eigenmode and portray a more intricate structure. The streamwise component of
modes 2 and 3 depicted in figure 10(c, e), respectively, show that qualitative changes
take place within the separation bubble and farther downstream, leading to an increase
in the number of spatially extended regions, in the form of smaller-scale coherent flow
features, often of opposite sign. The term ‘subspace bifurcation’ refers here to these
qualitative changes. Such bifurcations are attributed to the higher-order harmonics
required to properly represent the high-dimensional phase space of the data, which
when used in combination with other modes would separate the different time scales
within the interaction.

For instance, Dussauge et al. (2006) have compared energetic frequencies within
the reflected shock wave region and separation bubble using fluctuating wall-pressure
measurements in their Mach 2.3 shock reflection experiments and have found that
they are both different, with the separation bubble having energetic frequencies that
are an order of magnitude larger than those found in the reflected shock wave
region. The subspace bifurcations observed to occur within the separation bubble
are certainly consistent with the higher-order harmonics that would be required
to properly represent this dynamical behaviour. The reader may note that no such
bifurcation occurs within the reflected shock wave region between the first two modes,
which represent over 25 % of the total energy.

In contrast, mode 4 in figure 10(g, h) shows energetic fluctuations exclusively within
the redeveloping boundary layer, in the form of distinct regions of relatively large
streamwise and wall-normal velocity fluctuations of alternating sign. This pattern is
consistent with the circular regions of wall-normal velocity often observed in the
instantaneous realizations and is indicative of a train of quasi-streamwise vortices
in the form of a convected vortex street. It therefore appears that the subspace
features contained in the eigenmodes can represent the phenomenology observed in
the instantaneous realizations.
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Figure 10. The POD eigenmodes: u′/U∞ (left) and v′/U∞ (right). (Note that modes � 2
show 2u′/U∞.) Modal number and relative energy content are shown in the inset.
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Figure 11. The first POD eigenmode superimposed on to mean flow at three different ‘phases’:
(a) φ1

1 = 0, (b) φ1 = π/2 (mean flow field), (c) φ1
M = π. Wall-normal velocity contours are shown

along with streamlines and incoming boundary layer velocity vectors. The mean position of
the reflected shock wave is indicated by the dashed line. Shown on the left are zoomed velocity
profiles of the incoming boundary layer for clarity. The dotted line indicates the mean velocity
profile.

As an illustrative example to demonstrate the contribution of an eigenmode to the
interaction’s unsteadiness, the first eigenmode is superimposed on to the mean flow
field. Now if the POD is considered to be a powerful method to analyse coherent
behaviour in turbulent flows, then the direct analysis of the spatial modes in this
way has to be carried out with care. This is because a major limitation is the loss of
phase information, with velocity fluctuations within eigensubspace always in linear
dependence with a temporal coefficient independent of time. Yet this procedure is
both mathematically and conceptually permitted, since an instantaneous snapshot
of the interaction may be represented by a combination of eigenmodes, each at an
appropriate ‘phase’, as determined by the value of their respective temporal coefficient
at that instant.

Figure 11 therefore shows the first eigenmode at three of these ‘phases’, namely
φ1

1 = 0, φ1 = π/2 and φ1
M = π. The subspaces at φ1

1 = 0 and φ1
M = π in figure 11(a, c),
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respectively, represent the contribution of the first eigenmode to the mean flow field
when a1(tn) is at its minimum and maximum, therefore representing the two extrema
of the eignemode’s influence as a perturbation to the mean flow field. The mean flow
field itself occurs at φ1 = π/2, since a1(tn) = 0, and is shown as the intermediate case
in figure 11(b). Wall-normal velocity contours are also displayed with streamlines and
incoming boundary layer velocity vectors. An indication of the mean position of the
reflected shock wave is also shown by the dashed line. Zoomed incoming boundary
layer profiles are displayed on the left for clarity. The dotted line indicates the mean
velocity profile.

It can be seen that at φ1
1 = 0, a separation bubble is observed. The associated

velocity vectors indicate that the incoming boundary layer is marginally less full than
on the mean, and the reflected shock wave appears marginally farther upstream than
on the mean. Conversely, at the other extreme when φ1

M = π, the flow remains fully
attached. The associated velocity vectors indicate that the incoming boundary layer is
marginally fuller than on the mean, and the reflected shock wave appears marginally
farther downstream than on the mean. These observations are qualitatively consistent
with the interrelationships portrayed in the joint p.d.f.s in figure 8. It should be
remarked, however, that the quantitative effects of the first eigenmode on the mean
flow field are surprisingly small, despite the eigenmode’s relatively large fraction of
the total energy. Indeed, attempts to rebuild the relationship between 1 − 1/Hi and
(x − xmean)/δ using only the first eigenmode revealed that variations of 1 − 1/Hi and
(x −xmean)/δ were less than 3 % and 13 % of the variations found in the original data,
respectively. The interpretation of the first eigenmode (or any eigenmode) within the
context of explaining the large-scale unsteadiness of the interaction must therefore
be made with care, since it does not accurately describe the interaction’s unsteadiness
in any decisive way. This would necessitate the utility of additional eigenmodes
in order to properly represent the interaction’s unsteadiness. However, attempts at
determining state-space relationships between the various temporal coefficients were
unsuccessful, which substantiates the notion that the interaction’s unsteadiness is a
complex (high-dimensional) dynamical process.

5. Summary and discussion
We now consolidate the major observations made and formulate a simplified

model of the interaction’s unsteadiness, while at the same time making some
judicious inferences to link it to what has been reported in the literature. In the
model, the boundary layer first encounters the interaction, about two boundary layer
thicknesses upstream of where the incident shock wave would impinge on the wall
in the absence of the boundary layer. Here, incipient detachment occurs, and the
probability of observing reversed flow rapidly increases farther downstream towards
a maximal probability of about 50 %. The interaction in general may be qualitatively
decomposed, on an instantaneous basis, into two layers, characterized by a high-
velocity outer layer (typically u/U∞ > 0.5) and a low-velocity inner layer (typically
u/U∞ < 0.5). These two layers are separated by a thin region of relatively high shear,
in which discrete vortical structures are present.

These vortical structures are initially present close to the wall. Their initial
distribution may be reconciled with the interaction’s large-scale unsteadiness by
drawing on the work of Kim & Adrian (1999) and Adrian et al. (2000), who
formulated a conceptual model consisting of the streamwise alignment of hairpin
vortex structures into groups to form the so-called hairpin packets, and these packets
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then align to form very large-scale (i.e. > 3δ) streamwise-elongated regions of relatively
low- and high-speed fluid due to their induced motion. Although the present vortical
structures appear as the cross-sectional view of a more complicated three-dimensional
flow field, Humble et al. (2009) have recently investigated the present interaction’s
three-dimensional instantaneous structure using tomographic PIV and found evidence
of a streamwise alignment of three-dimensional vortical structures within the incoming
boundary layer, consistent with the hairpin-packet paradigm.

Such alignment gives rise to streamwise-elongated regions of relatively low- and
high-speed fluid. In the present study, measurements made in the streamwise–wall-
normal cross-sectional plane detect such regions as a sustained deformation of the
instantaneous velocity profile, leading to a change in its fullness. One can now see
how such small-scale structures could be associated with the large-scale unsteadiness
reported here. This idea has also been reported by Ganapathisubramani et al. (2007)
in their investigation of a compression ramp interaction; they also drew on the
hairpin-packet model. In particular, they reported that such structures can extend up
to 40δ in their Mach 2 boundary layer using Taylor’s hypothesis, which they state
could help account for the large-scale low-frequency unsteadiness.

As the interaction is approached, the vorticity layer and vortical structures are
lifted away from the wall when flow separation is present. The structures ride over the
separation bubble, treating it essentially like a streamlined obstacle, and create a fluid
exchange between the outer and inner layers of the interaction. Outer high-velocity
fluid is drawn in and ingested between the vortical structures, whereas low-velocity
fluid from the separated flow region is transported away from the wall. As a result,
the instantaneous reversed flow is intermittently supplied with fluid by the vortical
structures as they propagate through the interaction and not from downstream as
in the traditional (steady) view of separation, consistent with what is observed in
incompressible separated flows. Even without a significantly reversed-flow region, a
similar lifting of the vorticity layer and vortical structures can still occur due to the
bulk dilatation of the inner (downstream moving) subsonic fluid.

The above behaviour may also be reconciled with the large-scale unsteadiness.
Wu & Martin (2008) have recently hypothesized that one of the mechanisms of the
large-scale low-frequency motion of the shock wave involves a feedback loop between
the separation bubble, separated shear layer and shock system. This mechanism
involves large-scale enlarging and shrinking of the bubble that are associated with
an instantaneous imbalance between shear layer entrainment from the separation
bubble and fluid injection near reattachment and draws upon the earlier work of
Eaton & Johnston (1982), who carried out experiments in incompressible separated
flows involving backward-facing steps. Kiya & Sasaki (1985) further inferred from the
model of Eaton & Johnston (1982) that this imbalance is associated with the spatial
organization of vortical structures, which play an important role in the instantaneous
reattachment length by influencing the level of entrainment through a change in
spanwise coherency. Within the context of the present study, one can envisage the
passage of the present vortical structures, as they ride over the separation bubble,
being associated with this spanwise coherency, with the resulting fluctuating level
of momentum playing a role in the imbalance between shear layer entrainment
from the separation bubble and fluid injection near reattachment and therefore the
instantaneous bubble size. It is unclear at this point, however, how this mechanism
may be reconciled with the influence of the vortical structures within the incoming
boundary layer, but it is not inconceivable to believe that several mechanisms
associated with the large-scale unsteadiness coexist.
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Figure 12. Conceptual model of the interaction’s unsteadiness. The unsteady incoming
boundary layer velocity profile is shown along with its association with the size of the
separated flow region and reflected shock wave position. Also shown is the distinction between
the inner and outer layers of the interaction, with discrete vortical structures along their
interface.

Farther downstream, after turning around the separation bubble, the vortical
structures often return to the proximity of the wall, whereas in other cases they
become more broadly distributed normal to the wall than in the first part of the
interaction. This behaviour is associated with the separation bubble’s vortex-shedding
process. While boundary layer recovery initiates downstream, complete recovery is
not observed within the present measurement domain. A schematic of the model
portraying the main phenomenological features discussed is shown in figure 12.

6. Conclusions
Measurements of an incident SWTBLI at Mach 2.1 have been made using PIV

in combination with data processing using the POD to obtain an instantaneous
and statistical description of the unsteady flow organization. As a result, several
conclusions may be drawn.

On an instantaneous basis, the interaction exhibits a multi-layered structure,
characterized by a high-velocity outer region and a low-velocity inner region. The two
regions are separated by a thin region of relatively high shear, which has an irregular
and intermittent nature. Discrete vortical structures are prevalent along this interface,
which appear to create an intermittent fluid exchange as they propagate downstream.

A statistical analysis confirms the existence of an intermittent separated flow region,
with a streamwise extent within the range 0–2δ. While flow reversal occurs in around
half of the instantaneous realizations, the flow on average remains fully attached. The
probability density rapidly decreases for an increasing bubble size, and no bubble
sizes larger than 2δ are observed. There also exists momentarily small-scale flow
reversal scattered both upstream and downstream of the interaction, with reversed-
flow regions occurring more frequently within the redeveloping boundary layer than
within the incoming boundary layer.
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An interrelationship appears to exist between the fullness of the incoming boundary
layer velocity profile, separated flow region and reflected shock wave. Joint p.d.f.s
suggest that when 1 − 1/Hi is greater than its median value (boundary layer less
full), the streamwise extent of the (largest) separated flow region is more likely to be
larger than its median size, and the reflected shock wave is more likely to be located
downstream of its mean position, and vice versa. This relationship is weak, however,
and this is thought to be associated with the intermittent nature of the interaction.

The eigenmodes returned from the POD show an energetic association between
velocity fluctuations within the incoming boundary layer, separated flow region and
across the reflected shock wave, and portray subspace features that represent, to a
certain extent, the phenomenology observed in the instantaneous realizations. No
single eigenmode, however, may be used to describe the interaction’s unsteadiness in
any decisive way, and the utility of higher-order eigenmodes is required to properly
represent the complex dynamics of the interaction.
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